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1. Introduction

Vibrational energy flow in an undamped elastic body can arise from both propagating and
evanescent wave components. A good example of this is provided by a simple Euler–Bernoulli
beam in which four bending waves exist at any specified frequency. Two of these waves
correspond to left and right propagating waves, while the other two are evanescent waves, one of
which decays exponentially to the left, and the other decays exponentially to the right. When
present in isolation, each of the propagating waves transmits energy, while each of the evanescent
waves does not. When all four waves are present at once, the energy flow in the system is
complicated by the fact that the two evanescent waves can interact to transmit energy, as clearly
described by Bobrovnitskii in Ref. [1] and in subsequent discussion [2,3] arising from that
reference. More generally, an expression for the interactive energy flow in a pair of evanescent
waves was given in Ref. [4] for the case of systems governed by a transfer matrix, which covers the
case of plane waves in any homogeneous system. The analysis of Ref. [4] does not apply to
cylindrical waves, although the energetics of cylindrical wavefields can be of interest in the study
of high frequency vibrations [5,6]. The aim of the present note is to derive an expression for the
interactive energy flow associated with evanescent cylindrical bending waves in a flat plate, and to
demonstrate important differences between Hankel function and modified Bessel function
descriptions of the evanescent waves.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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2. Energy flow in cylindrical bending waves

2.1. Governing equation and complementary functions

When expressed in polar coordinates (r, y) the equation of motion that governs the harmonic
bending vibration of a thin plate has the form [7]
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where w(r, y) is the out-of-plane displacement, which is taken to have the time dependency
exp(iot), where o is the vibration frequency. The parameter k that appears in Eq. (1) is the
wavenumber, and this is given by k2

¼ o
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
; where r is the material density, h is the plate

thickness, and D is the flexural rigidity. If the solution to Eq. (1) is written in the form

wðr; yÞ ¼ wnðrÞcos ny or wðr; yÞ ¼ wnðrÞsin ny; ð2Þ

where n is any integer, then it follows that a set of independent complementary functions can be
derived by considering the solution of [7]
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It is well known that the independent solutions of Eq. (3) associated with +k2 are

wnðrÞ ¼
JnðkrÞ

Y nðkrÞ

�
or wnðrÞ ¼

Hð1Þ
n ðkrÞ;

Hð2Þ
n ðkrÞ;

(
ð4; 5Þ

where Jn and Y n are the Bessel functions of order n of the first and second kind, respectively, and
H ð1Þ

n and H ð2Þ
n are the Hankel functions of order n of the first and second kind, respectively [8].

Similarly, the independent solutions to Eq. (3) associated with �k2 are

wnðrÞ ¼
InðkrÞ

KnðkrÞ

�
or wnðrÞ ¼
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n ðikrÞ;

H ð2Þ
n ðikrÞ;

(
ð6; 7Þ

where In and Kn are the modified Bessel functions of order n of the first and second kind,
respectively. The functions appearing in Eq. (5) are generally identified physically as propagating
cylindrical waves, while those in Eq. (7) are described as evanescent cylindrical waves. This
interpretation is consistent with the following behaviour of the Hankel functions for large
argument kr [8]:
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Noting that since the time dependency exp(iot) has been adopted, Eqs. (8) and (9) clearly
correspond to inwardly and outwardly propagating waves, respectively, while Eqs. (10) and (11)
represent exponential decay and growth. From this point of view it might be expected that each of
the solutions appearing in Eq. (5) will propagate vibrational energy, while each of those appearing
in Eq. (7) will not; this is certainly true for the analogous case of propagating and evanescent wave
components in a bending beam [1]. The validity of this hypothesis is investigated in what follows
by considering the energy flow through a circle of radius a, centred at the origin of the polar
coordinate system.

2.2. Energy flow through a circular boundary

As pointed out by Bobrovnitskii in Ref. [9], transmission of vibrational energy through any
boundary occurs not only due to the action of the out-of-plane shear force S and the bending
moment M but also due to the action of the twisting moment T. The instantaneous power per unit
length of circumference at any point on the circle is given by the product of the shear force and the
out-of-plane velocity, plus the product of the bending moment and the rate of change of slope in
the radial direction, plus the product of the twisting moment and the rate of change of slope in the
tangential direction. The total time averaged power can thus be written as
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where the integration is around the circumference of the circle, and an asterisk denotes the
complex conjugate. However, since the integration is around a closed boundary, it is readily
shown (by integration by parts) that Eq. (12) can be written as
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where S � qT=aqy is the Kirchhoff effective shear force [9,10], and a dash represents
differentiation with respect to r, so that w0 is the slope in the radial direction. Using this
notation, the effective shear force and the bending moment are given by [7]
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where n is the Poisson ratio. By adopting Eq. (2) and taking wn(r) to satisfy Eq. (3), it can be
shown that Eqs. (13)–(15) reduce to the following simple expression

P ¼ �paDok2�nIm½ww0��; ð16Þ

where the � sign corresponds to the � sign in Eq. (3), and �n ¼ 1 unless n ¼ 0; in which case
�n ¼ 2: The result given by Eq. (16) is closely analogous to the energy flow in a membrane (given
by the average value of the pre-tension multiplied by the slope and the velocity), and this is
consistent with the fact that Eq. (3) is a form of the membrane equation of motion.
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Eq. (16) can also be written in the form

P ¼ �ipaDok2�nW fw;w�g=2; ð17Þ

where the � sign corresponds to the 7 sign in Eq. (16), and W fw;w�g is the Wronskian of the
functions w and w*. The Wronskian W y1ðrÞ; y2ðrÞ

� �
of two functions y1(r) and y2(r) is defined as

the determinant y1ðrÞy
0
2ðrÞ � y01ðrÞy2ðrÞ; where a dash represents differentiation with respect to the

argument r (see, for example, Ref. [11]). If the two functions y1ðrÞ and y2ðrÞ are linearly
independent, then the Wronskian is non-zero—conversely, if the Wronskian is zero, then the two
functions are linearly dependent. The energy flow associated with each of the complementary
functions given by Eqs. (5)–(7) can now be investigated.
2.3. Energy flow associated with the various complementary functions

2.3.1. Propagating wave components
The following relation holds for Hankel functions of real argument [8]

Hð1;2Þ�

n ðkrÞ ¼ H ð2;1Þ
n ðkrÞ; ð18Þ

where the notation H ð1;2Þ
n has been used to represent the Hankel function of either the first or the

second kind. Considering a general linear combination of the two solutions given in Eq. (5), it
follows from Eq. (17) that

wn ¼ anHð1Þ
n ðkrÞ þ bnH ð2Þ

n ðkrÞ

) P ¼ �ipaDok2�nðannan � bnb
n

nÞW fH ð1Þ
n ðkaÞ;H ð2Þ

n ðkaÞg=2; ð19Þ

where an and bn are arbitrary complex amplitudes. Now formula 9.1.17 of Ref. [8] yields

W Hð1Þ
n ðkaÞ;H ð2Þ

n ðkaÞ
� �

¼ �4i=ðpaÞ; ð20Þ

and so Eq. (19) can be written as

wn ¼ anH ð1Þ
n ðkrÞ þ bnH ð2Þ

n ðkrÞ ) P ¼ �2Dok2�nðjanj
2 � jbnj

2Þ: ð21Þ

Clearly the energy flow is independent of the radius a of the circle, as required for power
conservation. Also, there is no interactive energy flow between the two propagating wave
components, i.e. when both waves are present, the total energy flow is equal to the sum of the
energy flow in each individual wave component. Furthermore, if one of the two amplitudes is
zero, then

wn ¼ H ð1;2Þ
n ðkrÞ ) P ¼ �2Dok2�n; ð22Þ

where the �ve sign corresponds to wn ¼ H ð1Þ
n ðkrÞ: Here, H ð1Þ

n ðkrÞ is associated with incoming
power while H ð2Þ

n ðkrÞis associated with outgoing power, as predicted in Section 2.1. It can be noted
that Eq. (22) is identical to the result given by Eqs. (20) and (21) of Ref. [5] once a scaling factor of
p has been taken into account.
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2.3.2. Evanescent wave components

The following relation holds for the modified Bessel functions that appear in Eq. (6) [8]:

bð1;2Þ
�

n ðkrÞ ¼ bð1;2Þ
n ðkrÞ; ð23Þ

where the notation bð1;2Þ
n has been used to represent the modified Bessel function of order n of

either the first or the second kind, i.e. bð1Þ
n ¼ In and bð2Þn ¼ Kn: It then follows from Eq. (17) that for

any linear combination of the two functions

wn ¼ anInðkrÞ þ bnKnðkrÞ

) P ¼ �paDok2�nIm½anb
n

n�W fInðkrÞ;KnðkrÞg; ð24Þ

where again an and bn are arbitrary complex amplitudes. The Wronskian in Eq. (24) is found from
formula 9.6.15 of Ref. [8], so that

W InðkaÞ;KnðkaÞ
� �

¼ �1=a; ð25Þ

and hence Eq. (24) can be written as

wn ¼ anInðkrÞ þ bnKnðkrÞ ) P ¼ pDok2�nIm½anb
n

n�: ð26Þ

Eq. (26) clearly shows that there can be interactive energy flow between the two evanescent
cylindrical waves represented by the solutions given in Eq. (6). If one of the two amplitudes is zero
or if they are both real or both imaginary, or if they are both complex but linearly dependent
through a real constant, then the power is zero—otherwise it is non-zero. This confirms that there
is no energy flow associated with either of the two solutions appearing in Eq. (6), although they
may interact in such a way that energy propagation will occur. It is well known that evanescent
waves can interact to propagate energy [1]; the contribution made here is to quantify this effect for
cylindrical bending waves, via Eq. (26).
Now, the power flow associated with each of the two Hankel functions in Eq. (7) can be found

by noting that

2InðkrÞ ¼ ð�iÞnðHð1Þ
n ðikrÞ þ Hð2Þ

n ðikrÞÞ; ð27Þ

2KnðkrÞ ¼ p ið Þnþ1H ð1Þ
n ðikrÞ; ð28Þ

which can be obtained from formulae 9.6.3 and 9.6.4 of Ref. [8]. It follows immediately that

2piInðkrÞ þ ð�1Þnþ12KnðkrÞ ¼ ð�1ÞnpðiÞnþ1H ð2Þ
n ðikrÞ: ð29Þ

Eq. (28) states that H ð1Þ
n ðikrÞ is either real or imaginary (since KnðkrÞ is real when kr is real) and

that it can be written in terms of only one of the modified Bessel functions. Thus, in Eq. (26), the
amplitude an is zero and consequently H ð1Þ

n ðikrÞ has zero energy flow. On the other hand, Eq. (29)
states that H ð2Þ

n ðikrÞ is always complex and that it can be written as a linear combination of the
modified Bessel functions, where the amplitudes have different moduli and are linearly dependent
through an imaginary constant. Hence, from Eq. (26), H ð2Þ

n ðikrÞ does permit energy flow, and this
is given by

wn ¼ H ð2Þ
n ðikrÞ ) P ¼ ð�1Þnþ14Dok2�n: ð30Þ
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Clearly the direction of the energy flow depends on the order n of the complementary function.
In some ways Eq. (30) is a surprising result given the asymptotic behaviour of H ð2Þ

n ðikrÞ
represented by Eq. (11). However, although Eq. (11) suggests that H ð2Þ

n ðkrÞ is proportional to
InðkrÞ in the far field, Eq. (29) reveals that there is also a small non-zero component proportional
to KnðkrÞ; this component interacts with InðkrÞ to produce an energy flow that is independent of r.
Power balance is made possible by the fact that H ð2Þ

n ðikrÞ is singular at the origin, so that the origin
acts as a source (or sink) of power that is propagated to (or from) infinity.
3. Conclusion

This note has considered the energy flow associated with cylindrical bending waves in a flat
plate. The main results are Eq. (19) for propagating waves and Eq. (24) for evanescent waves. It
can readily be demonstrated that there is no interactive energy flow between propagating and
evanescent waves, and hence these two equations cover all possible mechanisms of energy transfer
in a cylindrical wavefield. It has been shown that: (i) if the modified Bessel functions In(kr) and
Kn(kr) are used to model the evanescent field, then energy flow can only occur through interaction
of the evanescent waves; (ii) if the Hankel functions Hð1Þ

n ðikrÞ and H ð2Þ
n ðikrÞare used to model the

evanescent field then, in addition to interactive energy flow, the second function is associated with
a direct energy flow via Eq. (30).
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